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A Nontangential Cutting Plane Algorithm^ 

Siriphong Lawphongpanich 
Operations Research Department 

Naval Postgraduate School 
Monterey, California 93943 

May 2001 

Abstract: 

A cutting plane algorithm for continuous optimization problems typically 
generates cuts that are tangential, or nearly so, to the Lagrangian dual function of the 
underlying optimization problem. This paper demonstrates that the algorithm still 
converges to an optimal solution when cuts are nontangential. These cuts are generated 
by not solving the subproblems to optimality or nearly so. Computational results from 
randomly generated linear and quadratic programming problems indicate that 
nontangential cuts can lead to a more efficient algorithm. 

Keywords: Cutting Plane Algorithm, Decomposition, Large-Scale Systems 

1. Introduction 

Consider the following optimization problem: 

P: f = min fix) 
s.t.    g(x)<0 

X G X, 

where g(x) = [gi(x),...,gm(x)]T. In addition, fix) and gp(x),p = \,...m, are convex 

functions, and X is a nonempty compact subset of R . For convenience, assume that 

Slater's constraint qualification (see, e.g., Bazaraa et al. [1993]) holds, i.e., there exists a 

point x0 e Xsuch that g(x0) < 0. 

A dual of problem P is 

D: L* = max L(u) 
s.t.    u > 0 and u e R , 

* This research was partially supported by the Naval Postgraduate School Institutionally Funded Research 
Program. 
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where L(u) = min^ {/(x) + ug(x)}and xy denotes the usual dot product between two 

vectors x and y. As defined, L(u) is the Lagrangian dual function associated with 

problem P. One method for solving problem D is the cutting plane algorithm (CPA) and 

below is a typical version (e.g., Bazaraa et al. [1993]). 

The Cutting Plane Algorithm 

SteP Q: Find a point x0 e Xsuch that g(x0) < 0. Set k = 1 and go to Step 1. 

Step 1: Solve the following (master) problem: 

M[k]:       max   w 

s.t.     w</*.) + ug(x), Vi = 0,...,(k- 1), (l) 
u>0. 

Let (wk, uk) denote an optimal solution and go to Step 2. 

Step 2: Solve the following (sub)problem: 

S[uk]: L(uk) = min,^ {/(x) + ug(x)} 

If wk = L(uk), stop and uk is an optimal solution to D. Otherwise, let xk denote an 
optimal solution to SfwJ, replace k with k + 1, and go to Step 1. 

The master problem in Step 1 is a linear program for which there exists a finite 

algorithm, e.g., the simplex algorithm (e.g., Dantzig and Thapa [1997]). For the 

subproblem in Step 2, a typical convergence proof for CPA requires an optimal solution. 

In practice, many would employ CPA only when the subproblem has a closed form 

solution or is easy to solve, for example, with an algorithm that terminates after 

performing only a small number of iterations. When a finite algorithm does not exist, 

several articles (e.g., Zakeri et al. [2000] and references cited therein) indicate that CPA 

would generate an approximate solution to problem D in a finite number of iterations if 

the subproblem is solved to near optimality, i.e., ^-optimality. In some cases, it may be 

necessary for ek ->• 0, as k ->• oo. 

The approach in this paper is different, in that it does not attempt to obtain an 

optimal or near optimal solution to the subproblem. Instead, the algorithm applied to the 

subproblem is terminated or truncated after a predetermined number of iterations, r > 1. 
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When r is small, the resulting solution is far from being optimal to the subproblem. 

Moreover, truncating the algorithm before it reaches an optimal subproblem solution 

results in cuts, i.e., hyperplanes defined by the master problem constraints (1), that are 

not necessarily tangential to L(u). 

For the remainder, Section 2 describes a nontangential cutting plane algorithm 

and proves its convergence, and Section 3 presents results from a computational study to 

illustrate the advantage of nontangential cuts. 

2.        A Nontangential Cutting Plane Algorithm 

The nontangential cutting plane algorithm (NCPA) stated below uses an 

algorithmic map to solve the subproblem. As in Zangwill [1969], let I\x,u) denote a 

mapping that maps a point (x,u) eXxUtoa. subset of X, where, in our context, Xis as 

defined previously and U = {u: u > 0 and u e R }.   Then, an algorithm for the 

subproblem is an iterative process that begins with a feasible point, xQ, and generates a 

sequence of points {xk} recursively using the recursion xk e Ux^^u). 

A nontangential cutting plane algorithm 

Step 0:  Find a point x0 s X such that g(x0) < 0. Set k = 1 and go to Step 1. 

Step 1:  Solve the master problem, M[k]. Let (wk, uk, it) denote its optimal primal and 
dual solutions and go to Step 2. 

(A-l) 

Step2:  Let yk = ^Vfx, andx^ e Hy^u,). Ifwk=flxk) + ukg(xk), stop and ukis an 

optimal solution to D. Otherwise, replace k with k + 1, and go to Step 1. 

With the exception of requiring an optimal dual solution, nk, to the master 

problem in Step 1, the first two steps of NCPA are the same as those in CPA. Instead of 

solving the subproblem optimally or nearly so, Xk in Step 2 is the result of applying an 

algorithmic map to {yk, ut) once. In practice, it may be more efficient to apply the 

algorithm map recursively several times. However, once is enough to establish 

convergence. 
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In Step 2, the initial solution, yk, for the algorithmic map is a convex combination 

of Xp k = 0,.. .,{k- 1), and feasible to problem P. The former is true because xk is 

optimal to the dual of the master problem stated below. 

DM[k]:   min    £*,/(*,) 
;=0 
k-\ 

s.t.      2>,g(x,)<0, 
;=0 

A-l 

5>,.=i, 
i=0 

7Ti>0,\/i = 0,...,(k-l). 

The feasibility follows from the convexity assumption for each component of g(x). In 

particular, the following holds because gp(x) is convex. 

fk-\ \       k-\ 

V /=o J     (=o 

To establish convergence for NCPA, assume that the algorithmic map I\x,u) 

satisfies the following convergence conditions similar to those in Zangwill [1969]: 

a) fix, u) is closed for any point (x, u) such that x is not a solution to the 

subproblem S[w], i.e., minxeA. {f(x) + ug(x)}. 

b) If v € ^Tis not a solution of problem S[u], then/jc) + ug(x) <fiy) + ug(y) for 

every x e I\y, u). When v e Xis a solution, fix) + ug(x) = fty) + ug(y) V x e 

Hy,u). 

The first part of condition (b) ensures that the new cut eliminates (wk, uk) from the 

feasible region of the next master problem, M[& +1]. Under these two conditions, the 

following theorem justifies the stopping criterion in Step 2. 

Theorem 1: If wk =fixk) + ukg(xk), then uk solves problem D and yk solves problem P. 

Proof: Recall from the above discussion that yk is feasible to problem P. Because uk is 

feasible to problem M[k], it must be nonnegative, thereby feasible to problem D. 
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The complementary slackness conditions in linear programming ensures that wk = 

ßx^) + ulcg(xj) for all i such that^-f > 0 and / = 0,..., (k- 1). Combining this fact with 

the convexity of fix) and g (x) and the convergence condition (b) yields the following: 

fk-\ 

>        f 
'k-\ \ 

2X*<- +ukg 2Xx<- 
. <=0 V '=o J 

=   Ayk)+Ukg(yk)> 

>    fixk)+ukg(xk). 

Since the theorem assumes that wk =fixk) + ukg(xk), it follows from the above sequence 

of equations that wk =Axk) + ukg(xk)=ftyk) + ukg(yk). However, the convergence 

condition (b) further guarantees thaty* solves S[uk], i.e., 

L(uk) =fiyk) +ukg(yk)= wk. (2) 

Because M[k] and DM[£] must have the same objective value at optimality, the 

following must hold: 

where the inequality follows from our convexity assumption for/[*)- Combining (2) and 

(3) yields that L{uk) >fiyk)- On the other hand, the weak duality theorem (e.g., Bazaraa et 

al. [1993]) ensures that L(uk) <fiyk)- So, L(uk) =fiyk), i.e., the primal,^, and dual, uk, 

solutions have the same objective value, and the strong duality theorem (e.g., Bazaraa et 

al. [1993]) guarantees that both solutions must be optimal to their respective problems.[] 

From Theorem 1, yk and uk are optimal to their respective problems when NCPA 

terminates after a finite number of iterations. When it does not, NCPA generates 

sequences {uk}, {wk}, {xk} and {yk} with the following properties: 

c) w^^w^L*, 

d) fixk) + ukg(xk)< fiyk) + ukg(yk). 
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The first follows from the fact that M[k] contains more cuts than M[k- 1] and every 

master problem is a relaxation of problem D. The second is due to the convergence 

condition (b). 

The theorem below addresses the convergence of {yk} and {uk}. 

Theorem 2: Assume that there exists a point x0 e X such that g(x0) < 0 and T\x,u) 
satisfies the two convergence conditions. • If NCPA does not terminate after a finite 
number of iterations, then there exists an index set Q c {0,1,2,...} such that the 
sequences {yk}kea and {uk}ken converge to optimal solutions for problems P and D, 
respectively. 

Proof: Zangwill [1969] shows that every uk lies in a compact set under the first 

assumption. Therefore, there exists an index set Q such that the subsequence {uk}keCi 

converges to ux. 

Because (wk,uk) solves M[k], the following holds: 

Ax,) + ugfr,) >wk,Vi = 0,...,(k- 1). (4) 

From property (c), {wk} is a monotonically nonincreasing sequence and bounded below. 

Thus, {wk} must converge to wx. Taking the limit in (4) for k e Q yields 

Ax^ + uag(xl)>wm, Vz>0. (5) 

Since X is compact and xt s X, there must exist a subsequence QjcQ for which {x,}. 

converges to xx. Now, taking the limit in (5) for i e Qj gives 

Ax J + u^gix J > MV (6) 

From the proof of Theorem 1, wk>f(yk) + ukg(yk). Using a similar argument, 

there must exist a subsequence Q2 c Qx that leads to the following: 

w»>XyJ+ "«£<>«)• (7) 

Combining (6) and (7) produces 

AxJ + u^gix^^ßyJ + UxgiyJ. (8) 

Ifym is not optimal to S[wJ, then convergence condition (a) ensures that xm e r(y^uj 

and fix J + u^gixj < fiyj + u^giyj which contradicts (8). Therefore, ya must be a 
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solution of S[wJ, i.e., Z(wJ = XyJ + u^iyj =f[xj + u^xj. From (6) and (7), it 

follows that !(«<„) = wffl which, as in Theorem 1, implies thatymand «„are optimal to 

problems P and D, respectively. [] 

3.        Computational Results 

This section summarizes computational results on two sets of randomly generated 

problems. One set is quadratic and the other is linear. We implement CPA and NCPA 

using GAMS version 2.50 (Brooke et al. [1998]). With one exception (described below), 

we use CPLEX version 6.5 (ILOG [1999]) with default settings to solve linear problems 

and MINOS version 5.04 (Murtagh and Saunder [1995]), also with default settings, to 

solve nonlinear ones. All CPU times reported here are from a 500 MHz Pentium III 

computer with 384 MB of RAM and Windows NT version 4.0 (see, e.g., Solomon 

[1998]) operating system. 

Quadratic Problems 

In this set of problems, the functions in problem P are of the form fix) = 

(ßo*Xöo*) + cox, gp(x) = (QpXXQpX) + CpX + dp,p=\,...,m, and the setX= {x: Xj > 0}. 

We use a procedure similar to the one described in Rosen and Suzuki [1965] to generate 

data for these functions. Letting U[a, b] denote uniform random numbers between a and 

b, the procedure can be stated as follows: 

Step 1: Let elements of matrix Qp, p = 0,..., m, and vector cp, p = 1,..., m, be U[-5, 5] 

and U[-3, -1], respectively. 

Step 2: Let elements of optimal primal, x*, and dual, (u*, v*), solutions to be U[0, 2] and 

U[0, 5], respectively. Then, adjust v* so that x'v* =0,j = \,...,n, and choose 

dp,p =\,...,m, to satisfy the complementary slackness conditions: gp{x*)up= 0, 

p=\,...,m. 

Stepl: Set c0 = V*-2QIQ,X*-Y/PWPQP
X
*

+C
P)- 
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The expression for c0 in Step 3 ensures that (x*, u*, v*) satisfies the Karush-Kuhn-Tucker 

conditions (e.g., Bazaraa et al. [1993]) for the convex quadratic program defined by 

matrices Qp, vectors cp, and constants d . 

Table 1 compares iterates from CPA and NCPA when solving a quadratic 

problem generated using the above procedure. The problem has 20 variables and 10 

constraints. For CPA, the table lists the following information at the end of iteration k. 

• Master problem: The optimal objective value, wk, the associated gap value, which is 

the difference between wk and L* as a percentage of the latter (i.e., gap = 100x(w* - 

L*)IL*), and the number of iterations (see the column labeled 'iter' in the table) and 

CPU seconds (see the column labeled 'sec' in the table) required to solve each master 

problem to optimality using CPLEX. 

• Subproblem: The number of iterations (see the column labeled 'iter' in the table) and 

CPU seconds (see the column labeled 'sec' in the table) required to solve each 

subproblem by MINOS until the default optimality tolerance (set atl.OE-6) is 

satisfied. 

• Total time (see the column labeled 'Total sec' in the table) spent solving the master 

and subproblem. 

Except for the gap value column under the subproblem heading, Table 1 also 

provides the same information for NCPA. For this quadratic problem, we allow MINOS 

to perform at most five iterations when 'solving' the subproblem in NCPA. The 

subproblem gap value is the percent difference between the optimal subproblem objective 

value and the one obtained after five MINOS iterations. Observe that the subproblem 

gap values for NCPA decrease (not necessarily in a monotonic fashion) from 79.80% to 

nearly zero as the iterations progress. As the sequences {yk} and {uk} converge to 

optimal primal and dual solutions, yk, for k sufficiently large, must be nearly optimal to 

the subproblem at iteration k, i.e., min^^ {f(x) + ug(x)}. So, regardless of the number of 

iterations performed, convergence condition (b) ensures that xk is also nearly optimal to 

the subproblem for sufficiently large k. Thus, the condition automatically controls the 

quality of the subproblem solutions without using a sequence {sk} that converges to zero. 



m en en © CN en CN en oo CN CN ^t- >n 
"es NO vo NO 00 00 NO CN NO >/-> ■* cs NO NO 
■*-( NO r- r^ 00 r-- t~- NO r~- ON ON .. NO .. ON ON o 
H en o o © © © © © © © © © ^ ■TT 

© © d d d d d d d © © © CN 

in en en © CN en CN en 00 CN CN ■* in 
u ON ON ON r-H ON *—i ON 00 © m ^^ CN CN <tf en CN en CN 'd- en . en . in 00 

E 
tu 

en O © © © © © © © © © © *—• ^ 
E Ö © © © © © © © © © © © rt 

s 
o 
M 

o s- © 
La 
a 0) in </■> m in m <rt w-i *o >r> V~l • m • in ■^r 

< 
s 
es 

M 

s 
cc 

D. 
es 
Dl 

o 
oo 

NO P NO 
en 
© 
CN 

ON 
NO 

o 
NO NO en NO 

m m 
. © 

en 
. CN 

as od r-^ ON CN en ON r-' © en © © r- in ■=t ^t en •* <T) •«a- en CN 

o o © © © © © © © © © © 
U 
tu 

r- r- r~ r- r~- r- T-H t> l> en ^-H NO . *rf •"Ü- <* TT ■* ■* ■* en ^* ■* NO . en . ■* en s CO © o © © © © © © © © © © 

U © © d © © © © © © © © © 

c E 
1- 

CN CN CN CN m CN © en - in . ON 
CN ON 

en 
OX 
e 
*-* 

o 
a 
es 

NO © NO ON oo ON en © © en 
■ ^ ■ 

c Cm o 00 TT m p vq © 00 <n NO . ON o Z u M ON c-^ in •*' r-~ p-^ © t~ <o oo' r^ d cu 

es 

ON ON ON ON ON 00 00 r- r- m 

en 
en 
CN 

en 
in CN 

oo 
oo 

00 
CN 

ON 
NO 

in 
>n 

© 
© 

in 
' en ' 

CN o 
1 

© 
© 
CN 
in 

ON 
© 

i 

3t en 
O 

i 

CN 

CN 
i 

OO 
© 

1 

en 

© 
NO 

NO 
en 
00 
ON 

I 

CN 

NO 
en 

■ 

00 
ON 

CN 
i 

CN 
OO 

CN 
1 

NO 
© 
r- 
CN 

i 

ON 
CN • 

in 

en ^ 00 00 en 00 v> <r> wn NO ,_- in ON m 
"es U 

cu 
vo NO !-H © r~- m m i-H t-~ in r- r~- OO ON 
t~- oo 00 oo i—< OS oo ON © © . . CN . . © . © r~ 

O w o p © © *—< © ^^ © *~^ »—i i—< *—< CN in 
© © d d © © © © © © © © © NO 

E en , , 00 00 en 00 m lO •o NO ^H in ON in 
u 
cu 

ON ON © oo © 00 © © © 00 © © © ON 
CJ CN en VN ^r r~- ^t- NO NO NO m . . oo . . NO  . . en 00 s o 
u 
a 

en p © © © p p © © © © © © ~* '—' 
Ö d © © © © © © © © © d © ■^r 

£ ON 
JS ■3 ^^ 00 CN oo CN en TT CN ^H 1—1 © . . •* . . CN . . >n >n 

t/3 CN CN '"" CN CN ^™* CN CN CN CN CN CN 
" 

© 

O © © © o © © © © © © © © © 
< 

cu 
P- r— »—* CN t~- r- </1 i—( r~- r-~ r- r- oo o 
-d" ■"3- en en TT ■* CN en ■* TT . . ^t . . -* . . c~- ON 

B 
es 

V3 o p p © © © »—' © © © © © © en 
o © © © © © © d d © © d d CN 

E 
E cu CN CN (N CN en en en en CN in • . °o . ON  . 

CN 

oo 
ON 

2 
3 o 
u u 

C. 
es 
o © ^-* © en CN © ON *—i r~- f- en en 

Ck a\ NO ^* oo ^t en p p »—^ 00 in 
u M ON a\ ON od r~ t-^ c~ in en © ■* 

ON © cu 

V3 

ON ON ON ON ON ON ON ON ON ON SO 

es 

O 
ON 

ON 
(N ON 

CN 
en 

NO 
f-; 

en NO 
© 

>n 
© 

00 
00  ■ 
© 
© 

en 
ON 

• (N • 

© 
© 

© 
© 

•« 
S ^ NO 

I 

CN 
oo 
ON 

I 

en 
CN 

CN 
NO 

NO 
CN 

■* NO 
en NO 

i 

en oo 
CN 

ON 
CN 

en 
en >n 

NO ON 
en 

i 

o 
© 

ON 
© 

1 i i i ■ 
1 

■ i 

^ 

■« — CN en •"* m *o t~- oo ON © . 
CN 

oo 
CN 

. Os 
CM 

O H 

Vi 

a 
'« u 
oe 
C 
O u 

s 
es 

s 
SS 

• IM 
!- 
es 
> 
o 
es 
A 

s 
— s o u 
& 

es s- 
-B 
es 
s 
es 
u 
.o 

s 
VI 

u 
mm 
es 
fi 

es 
■»-» s 
&. 
E o 
U 

es 
H 



In Table 1, the values of wk from NCPA also converges to L* faster than those 

from CPA.   Without the requiring the cuts to be tangential to the Lagrangian dual 

function, nontangential cutting planes can make deeper cuts as Figure 1 illustrates. In the 

figure, the master objective value due to the tangential cuts is w, and the one for the 

nontangential cuts is smaller at w2. Overall, NCPA requires fewer iterations and less 

CPU time to achieve a solution with a 1% gap or less. In Table 1, the total time required 

to solve the master and subproblems for CPA (« 6.58 sec.) is more than 2.5 times the one 

for NCPA («2.50 sec). 

Tangential Cuts 

Nontangential Cuts 

Figure 1: Tangential and nontangential cuts 

Table 2 summarizes results from solving 25 random quadratic problems of 

various sizes. For each problem size (identified by the number of variables and 

constraints), we generate five random problems and solve them by the two methods until 

the gap is less than or equal to 1%. As in the above problem with 20 variables and 10 

constraints, the maximum number of iterations, r, allowed for the subproblem in NCPA is 

five. For each method, Table 2 reports the average gap value achieved, number of 

iterations, and CPU times spent solving the master and subproblems. 

10 
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"4, An 

A2l 0 

_ 0 ^32. 

In general, NCPA requires fewer iterations and less CPU time for both the master 

and subproblems. Because we restricted the number of iterations for the subproblem to 

be no more than five for NCPA, it is no surprise that NCPA uses fewer iterations and less 

CPU time on the subproblem. On the other hand, the results for the master problems in 

Table 2 suggest that those with nontangential cuts are easier to solve as well. Finally, the 

last column in the same table gives ratios of the two total CPU times, those for NCPA 

over those for CPA, and they range from 0.55 to 0.09. In other words, the saving due to 

the nontangential cuts ranges from 45% for small quadratic problems to 91% for large 

ones. 

Linear Problems 

Problems in this set are random linear programs of the form min{cx: Ax < b, x > 

0}, where 

A = 

With respect to problem ?,fix) = ex, g(x) = [Au: An]x - bx, and^= {x: [A2]:0)x < b2, [0: 

A32]x < b3, and x > 0}. For our experiments, elements of An and Ai2 are U[-l, 5], those 

for ^21 and ^32 are U[-l, 10], and the optimal primal and dual solutions are U[0, 5]. The 

remaining data were chosen so that the primal and dual solutions satisfy the 

Karush-Kuhn-Tucker conditions in a manner similar to the procedure described above. 

(Note that the optimal primal and dual solutions generated in this manner are usually not 

basic.) 

We also replaced problem M[k] with problem DM[&] in Step 1. Doing so reduces 

CPA to Dantzig-Wolfe decomposition [I960]. Moreover, the structure of the setX 

allows the subproblem, S[k], to separate into two independent linear programs. 

In Step 2 of NCPA, yk is not necessarily an extreme point. This makes it difficult 

to warm start CPLEX with a basic feasible solution. One simple way to resolve this is to 

treat each subproblem in NCPA as a nonlinear problem and let MINOS perform at most r 

12 



iterations. Unlike quadratic problems, setting r to five results in 'shallow' cuts and, as a 

consequence, NCPA requires too many master iterations to arrive at a solution with 1% 

gap. For the results reported below, we first solve the problems by CPA. For NCPA, we 

set r to be approximately 50% of the minimum number of iterations required to solve 

each subproblem in CPA. 

Table 3 reports the results for linear problems. These results are similar to those 

for the quadratic problems in that NCPA requires fewer iterations and less CPU time to 

arrive a solution with no more than 1% gap. As in the quadratic case, the saving due to 

the nontangential cuts ranges from 53% for small linear problems to 81% for large ones. 
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